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Abstract. In this research, an In-network processing (INP) based computational 

framework has been proposed that gradually refine the captured information 

while moving it upstream to the application. The refinement can go up to the 

point of knowledge extraction from the primitive or even fused data. It shows 

that the demanding tasks that previously were simply undertaken on the fixed 

infrastructure are now possible on the mobile end. It relies on a sophisticated in-

network processing scheme that gradually refines the information captured by 

sensing elements to the level of application-exploitable knowledge. With this 

process, the scaling problem is tackled much more efficiently through a problem 

segmentation and exploitation of physics-based and human-based sources. The 

components executing on INP nodes are structured appropriately to delegate the 

demanding subtasks to some onboard accelerator. The core program executes on 

the central processing unit and exploits the particular characteristics of the side 

processor. Special system-on-chip (SoC) hardware for computational accelera-

tion like central processor unit (CPU), digital signal processor (DSP) or field-

programmable gate arrays (FPGAs) are desirable. These accelerated hardware 

supports software defined process on-chip memory that expedites all the ad-

vanced processing with a minimum energy overhead. In-network software de-

fined processing (ISDP) capabilities has been considered that allows dynamic 

reconfiguration of the network topology. It is advantageous for the network to 

possess reliable and complete end-to-end network connectivity; however, even 

when the network is not fully connected, the system may act as conduits of infor-

mation — either by connectivity gaps, or by distributing information from the 

network space. 
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1 Introduction 

Due to the rapid development and spread of embedded computer technology over the 

last decade [1], sensor nodes are widely used in situational awareness and produce po-

tentially abundant information for IoT applications. However, the disconnected, inter-

mittent and limited communication environment that these nodes often operate in make 

the usage of internet-level communication solutions not applicable on the WSN level 

[2-4]. The direct consequence is the increase (already in place) of the amount of big 

data to be analyzed, which in the industrial field translates in the need to equip itself 

with platforms of data storage of enormous proportions [5]. The exponential increase 

of the data to be analyzed leads to the need for adopt new ways to provide answers 

immediate and reliable applications to high degree of criticality, which do not tolerate 

latencies in communication. A growing number of contemporary IoT applications re-

quire more from WSNs than simple data acquisition, (conditional) communication and 

collection to databases. For example, maintenance in nuclear applications, such as ISR 

systems, aim to improve the situation awareness of decision makers and expect pre-

processed data that are already converted to human understandable form. 

 

Data collection to central databases, as used in typical WSNs for monitoring, creates 

overhead, potential bottlenecks and offers limited resilience [6]. An additional aspect 

is that some of the potential WSN users, such as in-the-field extreme environment 

maintenance (i.e ATLAS, CERN), need situational information in a timely manner and 

would prefer to receive information tailored to their current information needs directly 

from the network to minimize delays and dependence on central infrastructure. In order 

to manage the large data flows and to minimize the bandwidth requirements, novel 

paradigms such as D2D and mist computing (an extension of fog computing) need to 

be exploited. Traditional data aggregation is a predecessor of these paradigms, but in 

its classical form is not enough for IoT applications, because the traditional flow of data 

from network edge (sensor nodes) to center (databases) remains.  

 

In general, performing intelligence operations inside the network, such as eliminating 

irrelevant records and aggregating raw data, can reduce energy consumption and im-

prove sensor network lifetime significantly [7]. This is referred to as sensor data pro-

cessing, in which an intermediate proxy node is chosen to house the data transformation 

function to consolidate the sensor data streams from the data source nodes, before for-

warding the processed stream to the sink. Sensor based IoT nodes sense, receive, pro-

cess and transmit data to other nodes. In these functions, a node may exhibit different 

degrees of intelligence and sophistication. Some nodes involve little processing and 

transmit small quantities of information. Other are connected to sensors that generate 

large quantities of data (e.g. cameras), require large storage, high processing power and 

may transmit many data. Other types of nodes (i.e., knowledge discovery, consensus, 

reasoning or fusion) also exhibit varying needs. Consequently, node capabilities vary 

from highly restricted resources in terms of processing, storage, transmission band-

width and energy to devices that compare to current smart phones in terms of resources. 

In-network processing is a technique employed in sensor database systems whereby the 
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data recorded is processed by the sensor nodes themselves. This is in contrast to the 

standard approach, which demands that data is routed to a so-called sink computer lo-

cated outside the sensor network for processing. In-network processing is critical for 

IoT based sensor nodes because they are highly resource constrained, in particular in 

terms of battery power and this approach can extend their useful life quite considerably. 

Based on their capabilities, the nodes are assigned a specific role/type in order to 

achieve a certain task. Different nodes can cooperate in the execution of some workflow 

in order to achieve some goal/task also based on the semantics of the processed data. 

For instance, a set of nodes can participate in the execution of a workflow, which im-

plements a high level fusion operator or, even, a distributed classification algorithm. 

The node can be envisaged as the basic INP units through which collaborative intelli-

gence can be attained. Energy consumption is a crucial factor in a sensor network. INP 

is a useful technique to reduce the energy consumption significantly. Many different 

processing modules within the IoT infrastructure that can gradually refine the captured 

information while moving it upstream to the application. The refinement can go up to 

the point of knowledge extraction from the primitive or even fused IoT data. The com-

ponents executing on such nodes (Fig. 1) are structured appropriately to delegate the 

demanding subtasks to some onboard accelerator (e.g., DSP, GPU). The core program 

executes on the central processing unit and exploits the particular characteristics of the 

side processor. Energy is the dominant constraint. Because the quantities of information 

to process are much larger and the processing algorithms are much heavier, nodes with 

higher processing capabilities are needed. Special hardware for computational acceler-

ation like DSP or FPGAs is desirable.  

 

 

Fig. 1. INP Node 

2 In-network Processing Architecture 

In-network processing architecture usually involves information filtering/transfor-

mation nodes that rely on computationally demanding algorithms. Such nodes are based 

on accelerated, not conventional hardware that expedites all the advanced processing 

with a minimum energy overhead. This is imperative for the efficient operation of the 
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WSN as it addresses two important needs: performing demanding tasks at low energy 

cost, filtering the information to support energy efficiency and render the network sus-

tainable over time. Different schemes for the processing of IoT generated data have 

been investigated in this chapter. The objective is to reduce the application processing 

needs in the discussed domains and drastically reduce the volume of data seen by the 

application. Currently, applications collect huge volumes of ΙοΤ data in their support 

databases for further processing in line with specific business logic. Many different 

processing modules within the IoT infrastructure have been orchestrated that gradually 

refine the captured information while moving it upstream to the application. The re-

finement can go up to the point of knowledge extraction from the primitive or even 

fused IoT data. With this scheme, the originally identified scaling problem is tackled 

much more efficiently through a problem segmentation and exploitation of in-network 

processing. The components executing on such nodes are structured appropriately so 

as to delegate the demanding subtasks to some onboard accelerator (e.g., DSP, GPU). 

The core program executes on the central processing unit and exploits the particular 

characteristics of the side processor. Energy is the dominant constraint. Because the 

quantities of information to process are much larger and the processing algorithms are 

much heavier, nodes with higher processing capabilities are needed. Special hardware 

for computational acceleration like digital signal processor (DSP) or field-programma-

ble gate arrays (FPGAs) is desirable. As these nodes must be able to operate on batteries 

for relatively long periods devices that resemble modern smart phones may satisfy their 

requirements. IoT nodes sense, receive, process and transmit data to other nodes. In 

these functions, a node may exhibit different degrees of intelligence and sophistication. 

Some nodes involve little processing and transmit small quantities of information. 

Other are connected to sensors that generate large quantities of data (e.g. cameras), 

require large storage, high processing power and may transmit a lot of data. Other types 

of nodes (i.e., knowledge discovery, consensus, reasoning or fusion) also exhibit vary-

ing needs. Therefore, node capabilities vary from highly restricted resources in terms 

of processing, storage, transmission bandwidth and energy to devices that compare to 

current smart phones in terms of resources. Based on their capabilities, the nodes are 

assigned a specific role/type in order to achieve a certain task. Different nodes can co-

operate in the execution of some workflow in order to achieve some goal/task also 

based on the semantics of the processed data. For instance, a set of nodes can participate 

in the execution of a workflow, which implements a high level fusion operator or, even, 

a distributed classification algorithm. The node can be envisaged as the basic INP units 

through which collaborative intelligence can be attained. 

  

Nodes can be categorized into the following sub-types subject to their capability: 

• Sensing (S) node, 

• Fusion (F) node, 

• Consensus (C) node, 

• Knowledge extraction (K) node, 

• Sink (M) node. 
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Nodes can participate in the execution of some workflow in order to achieve some 

task/goal. The set of nodes that participates in the execution of some workflow can be 

also viewed as a composite node with certain input, output, and capability. A composite 

node can be further aggregated with other composite and/or basic nodes in order to 

construct an even more complex node, forming tree like structures. Based on such con-

structors of nodes, the main network of nodes and an overall view of the architecture 

are depicted in Fig. 2. Fig. 2 shows the role hierarchy in the user (data) plane. The 

several types of node are explained and analyzed below. 

 

2.1 Sensing Node (‘S’ node) 

The sensing node captures data from the environment and propagates this information 

to the network (either to ‘F’ or ‘C’ nodes). The processing capabilities of the sensing 

node can be limited since its main task is to sense and relay pieces of data to the up-

stream node. Additionally, several alternate routing schemes could be investigated as 

an add-on feature to optimize the overall network performance and avoid redundant 

retransmissions. The ‘S’ node, and each node that relays information, apart from pro-

cessing, can adapt its relay/data dissemination mechanism. For instance, the ‘S’ node 

can adapt the key operational parameters of an epidemic-based information dissemina-

tion scheme (i.e., the forwarding probability and validity period). The sensing node can 

be embedded to various sensing devices, thus, a sensing device consists of numerous 

sensing ‘S’ nodes. The sensing device can, then, be abstracted as a composite ‘S’ node. 

For instance, numerous vision sensors can be implemented as an ‘S’ node with onboard 

cameras and DSP facilities. A vision sensor produces readings (not video) for image 

segments (tiles). An indicative example involves fire detection through a vision sensor 

that segments images into 16 x 16 tiles. Each tile is handled independently within the 

camera sensor network (and the originating node of course). 

 

2.2 Fusion Node (‘F’ Node) 

The fusion node collects data from heterogeneous sources (‘S’ nodes or other ‘F’ nodes) 

and performs fusion operations in order to deduce more accurate information. The het-

erogeneity of the received information is bridged by the data semantics profile of each 

‘S’ and ‘F’ node. That is, the ‘F’ node is aware of the different type of pieces of data 

that is responsible to apply fusion operators. Obviously, conventional aggregator oper-

ators (e.g., statistical mean, min/max operators) can be applied on data of same type. 

However, the ‘F’ node can apply intelligent information fusion techniques (e.g., theory 

of evidence) on pieces of data of different types. The ‘F’ node is capable of fusing based 

on certain quality/validity metrics. The deduced information is provided as input either 

to ‘K’ nodes or to other ‘F’ nodes. In the latter case, the output of a first-level fusion 

process feeds a second-level fusion (multi-level fusion) in order to conclude to infor-

mation with higher degree of confidence. That is, a composite ‘F’ node represents a 

two-level fusion scheme, which consists of a set of ‘F’ nodes that fuse data from diverse 

data types. For instance, consider an ‘F’ node which produces probability of a fire event 

by fusing the results of (a) ‘F’ nodes, which aggregate temperature values, (b) of ‘F’ 
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nodes, which aggregate humidity values, and (c) of ‘F’ nodes which produce probabil-

ity of smoke and fire detection. One of the most obvious examples is receiving the input 

of a number of ‘S’ nodes and fusing them using some unsupervised learning method, 

e.g. PCA, k-means, etc., for dimensionality reduction. 

Fig. 2. INP Architectures (Roles, Connections) 

 

 

2.3 Consensus Node (‘C’ node) 

Consider a neighborhood of ‘S’ and ‘F’ nodes, which is spatially defined. The ‘S’ nodes 

monitor contextual parameters and the ‘F’ nodes aggregate the corresponding measure-

ments to compute an estimate in a completely distributed way. However, in order to 

deliver the locally measured data to a common (composite) ‘F’ node, the ‘S’ and ‘F’ 

nodes exchange their data by performing pair-wise aggregator operations (e.g., aver-

age), thus, converging to a common value for such nodes; then consensus is reached. 

The local estimate of the neighborhood is recorded at each participant node and, thus, 

can be recovered from any ‘surviving’ node in the neighborhood. Such neighboring 

nodes process and store information locally, as typical ‘S’ and ‘F’ nodes, but they be-

have as a single unit, the so called ‘C’ node. The nodes of a consensus group (neigh-

borhood) try to harmonize possible inconsistencies in the received information so the 

whole group to conclude to a shared and commonly accepted measurement and/or 

knowledge. In Fig. 2, CM nodes are just members (nodes) of a consensus group that 
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communicate to each other while node CL is the leader of the group that represents the 

whole group in the network (e.g., it exchanges information with external nodes). 

2.4 Knowledge Extraction Node (‘K’ node) 

The ‘K’ node performs machine learning and data mining operations to extract new 

knowledge, such as classification models, frequent patterns, novelty and outlier detec-

tion, from the different data sources generated from the network nodes. A ‘K’  node 

can use as input the output generated by different node types, ‘F’, ‘C’ and even ‘K’. In 

addition a ‘K’ node can also coordinate the distributed execution of data mining and 

machine learning operators over the different nodes of the network, in order to reduce 

the communication load, for example either by performing local dimensionality reduc-

tion via the ‘F’ nodes, or by requesting the generation of local models, and subsequently 

have the parameters/outcome of these models communicated instead of the actual data. 

 

2.5 Sink Node (M) 

The main role of the sink is to conceal IoT heterogeneity in terms of sensors, actuators, 

networking, or middleware through an interconnection unit. The sink node (M) con-

centrates the data stemming from the underlying IoT devices and performs the opera-

tions needed before feeding the applications with the requested information. The “M” 

node can be considered as a mediator between the underlying IoT and the application 

layer. The applications are fed with information by the network and are agnostic to the 

operation of the underlying IoT. A middleware capable of supporting intelligent perva-

sive applications can materialize this layer. 

3 Energy Efficient Parallel Processing 

This section describes the acceleration of in-network operations by means of energy 

efficient hardware. The adoption of a scheme that relies heavily on INP renders the 

architecture highly efficient, long lasting and drastically reduces the data processing 

load that the (sensor-supported) application or middleware should sustain. Even though 

such IoT architectures with increased INP characteristics can be designed and operated 

over conventional IoT hardware (e.g., motes with conventional processing elements)  

the use of accelerated nodes would further increase efficiency, thus, boosting the ben-

efits of INP. The approach to follow in such scenarios is to identify the merits of the 

accelerated hardware that is currently available for the IoT deployment and contrast 

these to the peculiarities of the algorithms that are foreseen in the INP architecture. In 

this chapter, Parallella platform [8], which facilitates the energy efficient parallelization 

of tasks within resource-constrained nodes, have been focused. Here the important as-

pect is parallelization. Hence, the idea is to identify all the roles/algorithms that feature 

internal operations/tasks with clear parallelization needs/capabilities (e.g., operations 

on matrices). Therefore, the structure on the INP building blocks that are assuming is 

the one shown in Fig. 3. The algorithm is fed with several sources of data that, gener-

ally, need to undergo some preprocessing phase. The general-purpose processor should 

perform this data-preprocessing phase together with coordination tasks, which is part 
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of the accelerated hardware. The non-parallelizable task may also orchestrate the deliv-

ery of data to the memories of the parallel processing element. Then, the parallelized 

tasks are invoked followed by the collection/consolidation of results and execution re-

sumes at the general-purpose processor. 

  

  

Fig. 3. Parallelized INP component 

The algorithms that were introduced in INP integrated parts that can be efficiently han-

dled in parallel. Typical examples are the PCA technique for dimensionality reduction 

and data compression, the multi-dimensional event detection and a data aggregation 

scheme that relies on FFT. 

 

 

 

Fig. 4. FFT Turnaround times on Parallella (ARM Epiphany-ARM) 

Fig. 4 shows the turnaround time (TAT) in the ARM-Epiphany combination for de-

manding FFT tasks. Specifically, the plot shows how TAT scales for different FFT 

sizes. FFT is invoked on the 4 and 8 cores processor in this benchmark but can be 

invoked in parallel on all 16 cores. Therefore, the Epiphany can be called to FFT 1024 



9 

 

samples (1K) for 16 streams in parallel. From the obtained results it is clear that times 

overlap and TAT minimally impacted as the number of streams increases from 1 to 16. 

Experimental results demonstrate up to 60% and 64% reduction in latency for GPU-to-

GPU and CPU- to-GPU point to- point communications, respectively. 

 

 

Fig. 5. Data transfer size over bandwidth 

 

The results for the DMA and direct-write transfer size measurements are shown in Fig. 

5. First the DMA transfer function provided by the SDK library was tested over the 

eMesh and eLink for different transfer sizes, capturing both the total transfer time and 

start-up time. Here we see a very large portion of the time spent sending data can be 

attributed to starting up the DMA engine (65.2% to 6.9%) in Fig. 6. 
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Fig. 6. DMA transfer size versus overhead 

Several nodes within the IoT are implemented through accelerated hardware which 

 

(a) Are assigned very specific roles in the data transformation process (raw data 

sampled somewhere are progressively turned into valuable knowledge) 

 

(b) Have the capability of fulfilling such roles very efficiently and avoid unneces-

sary transmissions through the network paths thus rationalizing the use of scarce 

energy 

 

(c) Have the capability to promptly react to changes in the network architecture and 

mitigate the “disturbances” to the overall data transformation plan through their 

reconfiguration capabilities. 

 

The accelerated hardware that is considered is based on Software Define (SD) SoC 

elements that combine a conventional processing element like ARM processor with 

hardware programmability of FPGA [9-10]. The FPGA part of the node architecture is 

handling the core functionality that the assigned role prescribes for this particular node 

(e.g., event detection, spectral decomposition, fusion). This is installed/deployed in the 

FPGA according to the initial role assignment/planning that the network planners de-

rive. Nodes should be equipped with the necessary components which are held inactive 

until external control stimulates the node. Within each node a supervisor/control pro-

cess is typically executed on the processor part of the SoC (Fig. 7). 
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Fig. 7. Control process of IoT network 

Table 1. Comparison of measurements 

 
 

Simulation is run for different packet sizes and for each packet size, performance is 

measured. The Table 1 summarizes the measurements. The measurement are carried 

out with 100 MHZ with burst size 16 and 256 respectively. These configurations abso-

lutely depends on how we define ZYNQ HW design in Vivado (for example the Clock 

frequency, the burst size etc.). Four GBytes of data to DRAM have been transferred 

and from that speed of transfer is obtained. Packet size has been defined for each test. 

Total transfer size is divided by total packet in order to get number of packets. From 

that, performance is calculated (time and speed). 

4 Conclusion 

A generalized architecture of INP has been discussed in this thesis paper taking into 

account the role of each components interfaces to ensure efficient exchange of the in-

formation and optimization of the overall resources. In conventional network pro-

cessing scenarios, problems frequently arise in a pipeline when certain data or pieces 

of information are not be readily accessible or available at the time they are needed by 

the pipeline or when computations take longer as a result of an exceptional condition. 

These problems contribute to an overall slowdown of the processing pipeline and lead 

to undesirable data transmission/processing stalls that markedly reduce performance. 

The INP system overcomes many of these issues and limitations by implementing dis-

crete processing paths wherein each processing path is directed towards handling net-

work traffic and data of a particular composition. The system architecture combines the 

energy efficiency with the flexibility and programmability of a system on a chip pro-

cessor. As power consumption is the highest priority design constraint, the proposed 

system for WSNs/IoT uses two techniques to reduce power consumption. 1) Light-

weight event handling in hardware: initial responsibility for handling incoming inter-

rupts is given to a specialized processor, removing the software overhead that would be 
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required to provide event handling on a general-purpose processor. 2) Hardware accel-

eration for typical WSN/IoT tasks: modular hardware accelerators are included to com-

plete regular application tasks such as data filtering. 
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